Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EBioMedicine ; 103: 105096, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574408

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS: We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS: We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION: The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING: Funding acknowledgements for each cohort can be found in the Supplementary Note.

2.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291025

RESUMEN

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Asunto(s)
Glándula Tiroides , Tiroxina , Humanos , Glándula Tiroides/metabolismo , Tiroxina/metabolismo , Estudio de Asociación del Genoma Completo , Triyodotironina/metabolismo , Tirotropina/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37962983

RESUMEN

CONTEXT: Autoimmune thyroid disease (AITD) includes Graves' disease (GD) and Hashimoto's disease (HD), which often run in the same family. AITD etiology is incompletely understood: genetic factors may account for up to 75% of phenotypic variance, whereas epigenetic effects (including DNA methylation (DNAm)) may contribute to the remaining variance (e.g. why some individuals develop GD and others HD). OBJECTIVE: To identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) comparing GD to HD. METHOD: Whole blood DNAm was measured across the genome using the Infinium MethylationEPIC array in 32 Australian patients with GD and 30 with HD (discovery cohort) and 32 Danish patients with GD and 32 with HD (replication cohort). Linear mixed models were used to test for differences in quantile-normalized beta values of DNAm between GD and HD and data were later meta-analyzed. Comb-p software was used to identify DMRs. RESULTS: We identified epigenome-wide significant differences (p<9E-8) and replicated (p<0.05) 2 DMPs between GD and HD (cg06315208 within MDC1 and cg00049440 within KLF9). We identified and replicated a DMR within CUTA (5 CpGs at 6p21.32). We also identified 64 DMPs and 137 DMRs in the meta-analysis. CONCLUSION: Our study reveals differences in DNAm between GD and HD, which may help explain why some people develop GD and others HD and provide a link to environmental risk factors. Additional research is needed to advance understanding of the role of DNAm in AITD and investigate its prognostic and therapeutic potential.

4.
Eur J Endocrinol ; 189(2): 164-174, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530217

RESUMEN

OBJECTIVE: Genome-wide association studies in adults have identified 42 loci associated with thyroid stimulating hormone (TSH) and 21 loci associated with free thyroxine (FT4) concentrations. While biologically plausible, age-dependent effects have not been assessed. We aimed to study the association of previously identified genetic determinants of TSH and FT4 with TSH and FT4 concentrations in newborns and (pre)school children. METHODS: We selected participants from three population-based prospective cohorts with data on genetic variants and thyroid function: Generation R (N = 2169 children, mean age 6 years; N = 2388 neonates, the Netherlands), the Avon Longitudinal Study of Parents and Children (ALSPAC; N = 3382, age 7.5 years, United Kingdom), and the Brisbane Longitudinal Twin Study (BLTS; N = 1680, age 12.1 years, Australia). The association of single nucleotide polymorphisms (SNPs) with TSH and FT4 concentrations was studied with multivariable linear regression models. Weighted polygenic risk scores (PRSs) were defined to combine SNP effects. RESULTS: In childhood, 30/60 SNPs were associated with TSH and 11/31 SNPs with FT4 after multiple testing correction. The effect sizes for AADAT, GLIS3, TM4SF4, and VEGFA were notably larger than in adults. The TSH PRS explained 5.3%-8.4% of the variability in TSH concentrations; the FT4 PRS explained 1.5%-4.2% of the variability in FT4 concentrations. Five TSH SNPs and no FT4 SNPs were associated with thyroid function in neonates. CONCLUSIONS: The effects of many known thyroid function SNPs are already apparent in childhood and some might be notably larger in children as compared to adults. These findings provide new knowledge about genetic regulation of thyroid function in early life.


Asunto(s)
Glándula Tiroides , Tiroxina , Adulto , Humanos , Niño , Recién Nacido , Preescolar , Glándula Tiroides/fisiología , Estudios Prospectivos , Estudios Longitudinales , Estudio de Asociación del Genoma Completo , Tirotropina , Pruebas de Función de la Tiroides , Glicoproteínas de Membrana/genética
5.
Thyroid ; 33(3): 301-311, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719767

RESUMEN

Background: Thyroid hormones play a key role in differentiation and metabolism and are known regulators of gene expression through both genomic and epigenetic processes including DNA methylation. The aim of this study was to examine associations between thyroid hormones and DNA methylation. Methods: We carried out a fixed-effect meta-analysis of epigenome-wide association study (EWAS) of blood DNA methylation sites from 8 cohorts from the ThyroidOmics Consortium, incorporating up to 7073 participants of both European and African ancestry, implementing a discovery and replication stage. Statistical analyses were conducted using normalized beta CpG values as dependent and log-transformed thyrotropin (TSH), free thyroxine, and free triiodothyronine levels, respectively, as independent variable in a linear model. The replicated findings were correlated with gene expression levels in whole blood and tested for causal influence of TSH and free thyroxine by two-sample Mendelian randomization (MR). Results: Epigenome-wide significant associations (p-value <1.1E-7) of three CpGs for free thyroxine, five for free triiodothyronine, and two for TSH concentrations were discovered and replicated (combined p-values = 1.5E-9 to 4.3E-28). The associations included CpG sites annotated to KLF9 (cg00049440) and DOT1L (cg04173586) that overlap with all three traits, consistent with hypothalamic-pituitary-thyroid axis physiology. Significant associations were also found for CpGs in FKBP5 for free thyroxine, and at CSNK1D/LINCO1970 and LRRC8D for free triiodothyronine. MR analyses supported a causal effect of thyroid status on DNA methylation of KLF9. DNA methylation of cg00049440 in KLF9 was inversely correlated with KLF9 gene expression in blood. The CpG at CSNK1D/LINC01970 overlapped with thyroid hormone receptor alpha binding peaks in liver cells. The total additive heritability of the methylation levels of the six significant CpG sites was between 25% and 57%. Significant methylation QTLs were identified for CpGs at KLF9, FKBP5, LRRC8D, and CSNK1D/LINC01970. Conclusions: We report novel associations between TSH, thyroid hormones, and blood-based DNA methylation. This study advances our understanding of thyroid hormone action particularly related to KLF9 and serves as a proof-of-concept that integrations of EWAS with other -omics data can provide a valuable tool for unraveling thyroid hormone signaling in humans by complementing and feeding classical in vitro and animal studies.


Asunto(s)
Epigenoma , Triyodotironina , Humanos , Glándula Tiroides , Tiroxina/genética , Islas de CpG , Estudio de Asociación del Genoma Completo , Factores de Transcripción de Tipo Kruppel/genética
6.
Eur J Endocrinol ; 185(5): 743-753, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34524976

RESUMEN

OBJECTIVE: Genetic factors underpin the narrow intraindividual variability of thyroid function, although precise contributions of environmental vs genetic factors remain uncertain. We sought to clarify the heritability of thyroid function traits and thyroid peroxidase antibody (TPOAb) positivity and identify single nucleotide polymorphisms (SNPs) contributing to the trait variance. METHODS: Heritability of thyroid-stimulating hormone (TSH), free T4 (fT4), free T3 (fT3) and TPOAb in a cohort of 2854 euthyroid, dizygous and monozygous twins (age range 11.9-16.9 years) from the Brisbane Longitudinal Twin Study (BLTS) was assessed using structural equation modelling. A genome-wide analysis was conducted on 2832 of these individuals across 7 522 526 SNPs as well as gene-based association analyses. Replication analysis of the association results was performed in the Raine Study (n = 1115) followed by meta-analysis to maximise power for discovery. RESULTS: Heritability of thyroid function parameters in the BLTS was 70.8% (95% CI: 66.7-74.9%) for TSH, 67.5% (59.8-75.3%) for fT4, 59.7% (54.4-65.0%) for fT3 and 48.8% (40.6-56.9%) for TPOAb. The genome-wide association study (GWAS) in the discovery cohort identified a novel association between rs2026401 upstream of NCOA3 and TPOAb. GWAS meta-analysis found associations between TPOAb and rs445219, also near NCOA3, and fT3 and rs12687280 near SERPINA7. Gene-based association analysis highlighted SERPINA7 for fT3 and NPAS3 for fT4. CONCLUSION: Our findings resolve former contention regarding heritability estimates of thyroid function traits and TPOAb positivity. GWAS and gene-based association analysis identified variants accounting for a component of this heritability.


Asunto(s)
Estudio de Asociación del Genoma Completo , Coactivador 3 de Receptor Nuclear/genética , Pruebas de Función de la Tiroides , Glándula Tiroides/fisiología , Globulina de Unión a Tiroxina/genética , Adolescente , Australia/epidemiología , Estudios de Cohortes , Femenino , Humanos , Yoduro Peroxidasa/análisis , Yoduro Peroxidasa/inmunología , Estudios Longitudinales , Masculino , Polimorfismo de Nucleótido Simple , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre , Gemelos Monocigóticos
7.
J Clin Endocrinol Metab ; 106(5): e2191-e2202, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33484127

RESUMEN

CONTEXT: Circulating concentrations of free triiodothyronine (fT3), free thyroxine (fT4), and thyrotropin (TSH) are partly heritable traits. Recent studies have advanced knowledge of their genetic architecture. Epigenetic modifications, such as DNA methylation (DNAm), may be important in pituitary-thyroid axis regulation and action, but data are limited. OBJECTIVE: To identify novel associations between fT3, fT4, and TSH and differentially methylated positions (DMPs) in the genome in subjects from 2 Australian cohorts. METHOD: We performed an epigenome-wide association study (EWAS) of thyroid function parameters and DNAm using participants from: Brisbane Systems Genetics Study (median age 14.2 years, n = 563) and the Raine Study (median age 17.0 years, n = 863). Plasma fT3, fT4, and TSH were measured by immunoassay. DNAm levels in blood were assessed using Illumina HumanMethylation450 BeadChip arrays. Analyses employed generalized linear mixed models to test association between DNAm and thyroid function parameters. Data from the 2 cohorts were meta-analyzed. RESULTS: We identified 2 DMPs with epigenome-wide significant (P < 2.4E-7) associations with TSH and 6 with fT3, including cg00049440 in KLF9 (P = 2.88E-10) and cg04173586 in DOT1L (P = 2.09E-16), both genes known to be induced by fT3. All DMPs had a positive association between DNAm and TSH and a negative association between DNAm and fT3. There were no DMPs significantly associated with fT4. We identified 23 differentially methylated regions associated with fT3, fT4, or TSH. CONCLUSIONS: This study has demonstrated associations between blood-based DNAm and both fT3 and TSH. This may provide insight into mechanisms underlying thyroid hormone action and/or pituitary-thyroid axis function.


Asunto(s)
Epigenoma/fisiología , N-Metiltransferasa de Histona-Lisina/genética , Factores de Transcripción de Tipo Kruppel/genética , Glándula Tiroides/fisiología , Triyodotironina/sangre , Adolescente , Australia/epidemiología , Niño , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Estudios Observacionales como Asunto/estadística & datos numéricos , Enfermedades de la Tiroides/sangre , Enfermedades de la Tiroides/epidemiología , Enfermedades de la Tiroides/genética , Pruebas de Función de la Tiroides , Estudios en Gemelos como Asunto/estadística & datos numéricos
9.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922575

RESUMEN

OBJECTIVE: There are no large, longitudinal studies of thyroid function across adolescence. The aims of this study were to examine longitudinal trends in thyrotropin (TSH), free triiodothyronine (fT3) and free thyroxine (fT4) and determine age-specific reference ranges. METHODS: Thyroid function was assessed in 3415 participants in the Brisbane Longitudinal Twin Study at ages 12, 14, and 16, using the Abbott ARCHITECT immunoassay. Longitudinal analyses were adjusted for body mass index and puberty. RESULTS: In girls, mean fT4 (± SE) increased between age 12 and 14 (by 0.30 ±â€…0.08 pmol/L; P < 0.001), while remaining unchanged in boys; from age 14 to 16, fT4 increased in both girls (by 0.42 ±â€…0.07 pmol/L; P < 0.001) and boys (0.64 ±â€…0.07 pmol/L, P < 0.001). There was a slight increase in fT3 from age 12 to 14 years in girls (by 0.07 ±â€…0.03 pmol/L; P = 0.042), with a more marked increase in boys (0.29 ±â€…0.03 pmol/L; P < 0.001), followed by a decrease from age 14 to 16 in both sexes (girls, by 0.53 ±â€…0.02 pmol/L; P < 0.001; boys, by 0.62 ±â€…0.03 pmol/L; P < 0.001). From age 12 to 14, TSH showed no significant change in girls or boys, then levels increased from age 14 to 16 in both sexes (in girls, by 4.9%, 95% CI: 2.4%-10.3%, P = 0.020; in boys, by 7.2%, 95% CI: 3.0%-11.6%, P = 0.001). Reference ranges differed substantially from adults, particularly for fT4 and fT3. CONCLUSIONS: Thyroid function tests in adolescents display complex, sexually dimorphic patterns. Implementation of adolescence-specific reference ranges may be appropriate.


Asunto(s)
Biomarcadores/sangre , Pubertad , Glándula Tiroides/fisiología , Hormonas Tiroideas/sangre , Adolescente , Niño , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Pronóstico , Valores de Referencia , Factores Sexuales , Pruebas de Función de la Tiroides
10.
Nat Commun ; 9(1): 4455, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367059

RESUMEN

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.


Asunto(s)
2-Aminoadipato-Transaminasa/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo , Hormonas Tiroideas/genética , Tirotropina/metabolismo , 2-Aminoadipato-Transaminasa/genética , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Estudio de Asociación del Genoma Completo , Humanos , Hipertiroidismo/genética , Hipertiroidismo/fisiopatología , Hipotiroidismo/genética , Hipotiroidismo/fisiopatología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/genética , Glándula Tiroides/metabolismo , Glándula Tiroides/fisiopatología , Hormonas Tiroideas/metabolismo , Población Blanca
11.
Eur J Hum Genet ; 24(2): 284-90, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26014426

RESUMEN

Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.


Asunto(s)
Sulfato de Deshidroepiandrosterona , Hormona Folículo Estimulante/genética , Hormonas Esteroides Gonadales/genética , Hormona Luteinizante/genética , Progesterona/genética , Sulfato de Deshidroepiandrosterona/metabolismo , Estradiol/genética , Femenino , Hormona Folículo Estimulante/metabolismo , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Hormonas Esteroides Gonadales/metabolismo , Humanos , Hormona Luteinizante/metabolismo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Prolactina/genética , Prolactina/metabolismo , Globulina de Unión a Hormona Sexual/genética , Globulina de Unión a Hormona Sexual/metabolismo , Testosterona/genética
13.
Nat Commun ; 6: 5681, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25743335

RESUMEN

Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function.


Asunto(s)
Sinapsinas/metabolismo , Glándula Tiroides/fisiología , Tirotropina/metabolismo , Tiroxina/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Estudios de Cohortes , Metilación de ADN/genética , Estudios de Asociación Genética , Genómica/métodos , Humanos , Sinapsinas/genética , Glándula Tiroides/metabolismo , Tirotropina/genética , Tiroxina/genética , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...